Synthesis of Pyrazolo[3,4-d]pyrimidines by Intramolecular Cycloaddition of Azahexatrienes

By Fumio Yoneda," Tomohisa Nagamatsu, and Tetsuya Nagamura, Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Kumamoto 862, Japan
Keitaro Senga, Pharmaceutical Institute, Keio University, Shinanomachi, Shinjuku-ku, Tokyo 160, Japan

Treatment of aldehyde pyrimidin-6-ylhydrazones with aromatic aldehydes (or treatment of 6-hydrazinopyrimidines with aromatic aldehydes in excess) in dimethylformamide under reflux gave 2,3-disubstituted pyrazolo[3,4-d]pyrimidines.

Previous methods for the preparation of pyrazolo-[3,4-d]pyrimidines ${ }^{1}$ involve (a) construction of suitably substituted pyrazole precursors followed by pyrimidine ring closure, ${ }^{, 2,3}$ (b) condensation-cyclization of 5 substituted 6 -hydrazinopyrimidines, ${ }^{4,5}$ and (c) oxidative cyclization of 6 -benzylidenehydrazinopyrimidine derivatives. ${ }^{6}$ We now present the experimental details of a new approach to pyrazolo $[3,4-d]$ pyrimidines. ${ }^{7}$

Refluxing aldehyde 1,3 -dimethyluracil- 6 -ylhydrazones $(1 \mathrm{a}-\mathrm{g})^{6}$ with aromatic aldehydes in dimethylformamide gave the corresponding 2,3 -disubstituted 5,7 -dimethyl-pyrazolo[3,4-d]pyrimidine-4,6(5H,7H)-diones ($2 \mathrm{a}-\mathrm{k}$). The structures (2) were confirmed by the benzylic proton signals at $\delta 5.3-5.5$ in the n.m.r. spectra (see Supplementary Publication) and by comparison with authentic samples prepared by benzylation of 3 -aryl-5,7-dimethylpyrazolo $[3,4-d]$ pyrimidine-4,6(5H,7H)diones ${ }^{6}$ with benzyl halides and potassium carbonate in dimethylformamide. \dagger
Heating the 6-benzylidenehydrazino-3-methyluracils $(3 a-c)^{6}$ with aromatic aldehydes in ethanol gave the 5 -benzylidene derivatives ($4 \mathrm{a}-\mathrm{d}$) possessing a diaza-hexatriene-type structure. Refluxing the products (4ad) in dimethylformamide led to the 3 -aryl-2-benzyl- 5 methylpyrazolo $[3,4-d]$ pyrimidine-4,6($5 \mathrm{FH}, 7 \mathrm{H})$-diones
($5 \mathrm{a}-\mathrm{d}$). Refluxing of compounds ($3 \mathrm{a}-\mathrm{c}$) with aromatic aldehydes in dimethylformamide gave the pyrazolopyrimidines ($5 \mathrm{a}-\mathrm{d}$) directly; these products were identified by transformation into compounds (2) by methylation with methyl iodide and potassium carbonate in dimethylformamide.

When acetophenone 1,3 -dimethyluracil- 6 -ylhydrazone (6) ${ }^{8}$ was treated with benzaldehyde in dimethylformamide, 2 -(1-methylbenzyl)-5,7-dimethyl-3-phenylpyrazolo $3,4-d]$ pyrimidine-4,6($5 \mathrm{H}, 7 \mathrm{H}$)-dione (7) was obtained.

Heating the 2 -amino-6-benzylidenehydrazino-4-hydroxypyrimidines $(8 \mathrm{a}-\mathrm{d}){ }^{9}$ with aromatic aldehydes [or heating 2 -amino-6-hydrazino-4-hydroxypyrimidine (10$)^{9}$ with an excess of aromatic aldehyde] in dimethyl-

[^0]formamide gave the 6-amino-3-aryl-2-benzyl-4-hydr-oxypyrazolo[3,4-d]pyrimidines (9a-d).

EXPERIMENTAL

2,3-Disubstituted 5,7-Dimethylpyrazolo[3,4-d]pyrimidine$4,6(5 \mathrm{H}, 7 \mathrm{H})$-diones $(2 \mathrm{a}-\mathrm{k})$. General Procedure.-Method A. To a solution of an aldehyde 1,3 -dimethyluracil-6ylhydrazone (1) (0.008 mol) in dimethylformamide (50 ml) was added an aromatic aldehyde (0.01 mol). The mixture was refluxed for 7 h , then evaporated to dryness in vacuo, and the residue was recrystallized from ethanol to give the corresponding pyrazolo[3,4-d]pyrimidine ($2 \mathrm{a}-\mathrm{k}$) (Table $1) . \ddagger$ M.p.s. and yields are indicated below the formulae.

Method B. A mixture of the pyrazolopyrimidine (5) (see later) (0.002 mol), methyl iodide (0.01 mol), and potassium carbonate (0.01 mol) in dimethylformamide (20 ml) was refluxed for 2 h . Inorganic substances were filtered off, the filtrate was evaporated to dryness in vacuo, and the residue was diluted with water. Recrystallization of the resulting crystals from ethanol gave the 5,7 -dimethylpyrazolo $[3,4-d]$ pyrimidinediones, which were identical with the products from method A. Compounds ($2 \mathrm{a}-\mathrm{c}$) were obtained in 70, 74, and 64% yield, respectively.

5-Benzylidene-6-benzylidenehydrazino-3-methyluracils
(4a-d). General Procedure.-A mixture of a 6-benzyl-idenehydrazino-3-methyluracil (3) (0.008 mol) and an aromatic aldehyde (0.01 mol) in ethanol ($100-150 \mathrm{ml}$) was refluxed for 3 h . After cooling, the crystals which separated were filtered off and recrystallized from ethanol. The following compounds were obtained: 5-benzylidene-6-benzylidenehydrazino-3-methyluracil (4a) (88\%), m.p. 279° (Found: C, 68.45; H, 4.9; N, 16.75. $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 68.65 ; \mathrm{H}, 4.85 ; \mathrm{N}, 16.85 \%$) ; 5-(p-chlorobenzylidene)-6-(p-chlorobenzylidenehydrazino)-3-methyluracil (4b) (93\%), m.p. 298° (Found: C, 56.7 ; $\mathrm{H}, 3.7$; N, 14.0. $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Cl}_{2}$ $\mathrm{N}_{4} \mathrm{O}_{2}$ requires C, $\left.56.85 ; \mathrm{H}, 3.5 ; \mathrm{N}, 13.95 \%\right)$; 5 -(p-methoxy-benzylidene)-6-(p-methoxybenzylidenehydrazino)-3-methyl-
uracil (4c), (59%), m.p. 267° (Found: C, 63.7; H, 5.55; $\mathrm{N}, 14.0 . \quad \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires $\mathrm{C}, 63.95 ; \mathrm{H}, 5.6 ; \mathrm{N}, 14.2 \%$); 5-(p-chlorobenzylidene)-6-(p-methoxybenzylidenehydrazino)-
3 -methyluracil (4d) (72\%), m.p. 258 ${ }^{\circ}$ (Found: C, 60.8; $\mathrm{H}, 4.3 ; \mathrm{N}, 14.05 . \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 60.55 ; \mathrm{H}, 4.3$; $\mathrm{N}, 14.1 \%$).
${ }^{4}$ W. Pfleiderer and K. H. Schündehütte, Annalen, 1958, 712 , 158.
${ }_{5}$ Y. Maki, K. Izuta, and M. Suzuki, Chem. Comm., 1971, 1442.
${ }^{6}$ F. Yoneda and T. Nagamatsu, Bull. Chem. Soc. Japan, 1975, 48, 1484.
${ }^{7}$ Preliminary report, F. Yoneda, M. Higuchi, and T. Nagamatsu, J. Amer. Chem. Soc., 1974, 96, 5607.
${ }^{8}$ S. Senda and K. Hirota, Chem. and Pharm. Bull. (Japan), 1974, 22, 1459.
${ }^{9}$ 'F. Yoneda, T. Nagamura, and M. Kawamura, J.C.S. Chem. Сотт., 1976, 658.

3-Aryl-2-benzyl-5-methylpyrazolo[3,4-d]pyrimidine-4,6-

($5 \mathrm{H}, 7 \mathrm{H}$)-diones (5a-d). General Procedure.-Method A. A solution of a hydrazone (4) (0.002 mol) in dimethylformamide (20 ml) was refluxed for 3 h . The mixture was evaporated to dryness in vacuo and the residue was recrystallized from ethanol to give the pyrazolo[3,4-d]pyrimidine (5) (Table 1). M.p.s and yields are indicated below the formulae.

To a solution of 1,3-dimethyl-6-hydrazinouracil (6 g, 0.035 mol) in ethanol (180 ml) was added crotonaldehyde ($3 \mathrm{~g}, 0.042 \mathrm{~mol}$), and the mixture was stirred at room temperature for 1 h . The crystals which separated were filtered off, dried, and recrystallized from ethanol to give prisms ($5.5 \mathrm{~g}, 70.5 \%$), m.p. $216^{\circ}, M^{+} 222$ (Found: C, 54.3; $\mathrm{H}, 6.45$; $\mathrm{N}, 25.4$. $\quad \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, $54.05 ; \mathrm{H}, 6.35$; N, 25.2\%).

(1)

$$
\begin{aligned}
& \mathrm{a} ; \mathrm{R}=\mathrm{Ph} \\
& \mathrm{D} ; \mathrm{R}=\rho-\mathrm{ClC}_{6} \mathrm{H}_{4} \\
& \mathrm{c} ; \mathrm{R}=3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \\
& \mathrm{~d} ; \mathrm{R}=\rho-\mathrm{MeO}_{6} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \\
& \mathrm{e} ; \mathrm{R}=\rho-\mathrm{Me}{ }_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \\
& \mathrm{f} ; \mathrm{R}=\mathrm{MeCH}: \mathrm{CH} \\
& \mathrm{~g} ; \mathrm{R}=\mathrm{PhCH}: \mathrm{CH}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \text { a; } R^{\prime}=R^{2}=P h \quad\left(193^{\circ} \mathrm{C} ; 80 \%\right) \\
& \text { b; } R^{\prime}=R^{2}=\rho-\mathrm{ClC}_{6} \mathrm{H}_{4} \quad\left(181^{\circ} \mathrm{C} ; 87 \%\right) \\
& \text { c; } R^{\prime}=R^{2}=3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \quad\left(194^{\circ} \mathrm{C} ; 85 \%\right) \\
& d ; R^{1}=R^{2}=\rho-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \quad\left(160^{\circ} \mathrm{C} ; 84 \%\right) \\
& \text { e; } R^{1}=R^{2}=\rho-\mathrm{Me}_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{L} \quad\left(258^{\circ} \mathrm{C} ; 58 \%\right) \\
& f ; R^{1}=\rho-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\rho-\mathrm{ClC}_{6} \mathrm{H}_{4}\left(204^{\circ} \mathrm{C} ; 68 \%\right) \\
& g ; R^{\prime}=p-\mathrm{Me}_{2} \mathrm{~N} \cdot \stackrel{\mathrm{C}}{6}^{2} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{Ph}\left(150^{\circ} \mathrm{C} ; 62 \%\right) \\
& h ; R^{\prime}=\mathrm{MeCH}: \mathrm{CH}, \mathrm{R}^{2}=\mathrm{Ph} \quad\left(126^{\circ} \mathrm{C} ; 32 \%\right) \\
& \text { i; } R^{1}=\mathrm{MeCH}: \mathrm{CH}, \mathrm{R}^{2}=\rho-\mathrm{ClC}_{6} \mathrm{H}_{4}\left(152^{\circ} \mathrm{C} ; 50 \%\right) \\
& j ; R^{1}=\mathrm{MeCH}: \mathrm{CH}, \mathrm{R}^{2}=3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\left(194^{\circ} \mathrm{C} ; 53 \%\right) \\
& k ; R^{1}=\mathrm{PhCH}: C H, R^{2}=\mathrm{Ph} \quad\left(162^{\circ} \mathrm{C} ; 73 \%\right)
\end{aligned}
$$

(3)
$a ; R=P h$
b; $R=\rho-\mathrm{ClC}_{6} \mathrm{H}_{4}$
c; $R=p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$

(4)

(5)

(6)
a; $R^{1}=R^{2}=P h \quad\left(231^{\circ} \mathrm{C} ; 68 \%\right)$
b; $R^{1}=R^{2}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} \quad\left(267^{\circ} \mathrm{C} ; 87 \%\right)$
c; $R^{\prime}=R^{2}=\rho-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \quad\left(247^{\circ} \mathrm{C} ; 78 \%\right)$
d; $R^{\prime}=p-\mathrm{MeO} \cdot \mathrm{C}_{6} \mathrm{H}_{4}, R^{2}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\left(200^{\circ} \mathrm{C} ; 65\right.$

(7)

(8)

(9)

(10)

$$
\begin{aligned}
& a ; R=P h \\
& b ; R=p-\mathrm{ClC}_{6} \mathrm{H}_{4} \\
& c ; R=3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \\
& d ; R=p-\mathrm{MeO}^{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4}
\end{aligned}
$$

Method B. A mixture of a 6-benzylidenehydrazino-3methyluracil (3) (0.008 mol) and an aromatic aldehyde $(0.01 \mathrm{~mol})$ in dimethylformamide ($60-80 \mathrm{ml}$) was refluxed for 7 h , then evaporated to dryness in vacuo, and the residue was recrystallized from ethanol to give (5) in almost the same yields as from method A.

Crotonaldehyde 1,3-Dimethyluracil-6-ylhydrazone (1f).-

Cinnamaldehyde 1,3-Dimethyluracil-6-ylhydrazone (1g).To a solution of 1,3-dimethyl-6-hydrazinouracil (2 g , 0.012 mol) in ethanol (150 ml) was added cinnamaldehyde ($2.1 \mathrm{~g}, 0.016 \mathrm{~mol}$) ; treatment as above gave prisms (2.84 g , 85%), m.p. $249^{\circ}, M^{+} 312$ (Found: C, 63.4; H, 5.55 ; N, 20.0. $\quad \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 63.35$; $\mathrm{H}, 5.65 ; \mathrm{N}, 19.7 \%$). 5,7-Dimethyl-2-(1-methylbenzyl)-3-phenylpyrazolo[3,4-d]-
pyrimidine-4,6(5H,7H)-dione (7).-A mixture of acetophenone 1,3-dimethyluracil-6-ylhydrazone (6) ($2 \mathrm{~g}, 0.0074$ mol) and benzaldehyde ($1.2 \mathrm{~g}, 0.01 \mathrm{~mol}$) in dimethylformamide (40 ml) was refluxed for 6 h , then evaporated to dryness, and the residue was recrystallized from ethanol to give granules ($1.55 \mathrm{~g}, 59 \%$), m.p. $148^{\circ}, M^{+} 360$ (Found: C, $69.9 ; \mathrm{H}, 5.65 ; \mathrm{N}, 15.3 . \quad \mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C} 70.0 ; \mathrm{H}$, 5.6; N, 15.55%).

6-Amino-3-aryl-2-benzyl-4-hydroxypyrazolo[3,4-d]pyrimidines (9a-d). General Procedure.-Method A. A mixture of 2 -amino-6-hydrazino-4-hydroxypyrimidine (10) $(0.01 \mathrm{~mol})$ and an aromatic aldehyde $(0.024 \mathrm{~mol})$ in dimethyl-
formamide (50 ml) was refluxed for 5 h . After cooling, the crystals precipitated were filtered off and recrystallized from dimethylformamide [yields $60-90 \%$ (Table 2)], m.p. $<360^{\circ}$. The structures (9) were confirmed by the benzylic proton n.m.r. signals at $\delta 5.7-5.5$. (Table 3 in Supplementary Publication).

Method B. Compounds (9a-d) were also prepared by the condensation of 2 -amino-6-benzylidenehydrazino-4hydroxypyrimidines ($8 \mathrm{a}-\mathrm{d}$) and aromatic aldehydes in dimethylformamide in similar yields.

[^0]: \dagger In the benzylation, the isomeric 1-benzylpyrazolo[3,4- d]-pyrimidine-4, $6(5 H, 7 H)$-diones were obtained as minor products.
 \ddagger Tables 1-3, containing analytical and n.m.r. data, are available as Supplementary Publication No. SUP 21975 (4 pp.). For details of Supplementary Publications see Notice to Authors No. 7, J.C.S. Perkin I, 1976, Index issue.
 ${ }^{1}$ R. K. Robins, in 'Heterocyclic Compounds,' ed. R. C. Elderfield, vol. 8, Wiley, New York, 1967, pp. 406-421.
 ${ }^{2}$ S. M. Mecht and D. Werner, J.C.S. Perkin I, 1973, 1903.
 a S. Senda, K. Hirota, and G.-N. Yang, Chem. and Pharm. Bull. (Japan), 1972, 20, 391, 399.

